资源类型

期刊论文 434

会议视频 13

年份

2023 27

2022 50

2021 43

2020 50

2019 24

2018 18

2017 16

2016 27

2015 19

2014 20

2013 19

2012 21

2011 22

2010 17

2009 14

2008 11

2007 13

2006 5

2005 4

2004 2

展开 ︾

关键词

环境 5

农业科学 4

人工神经网络 3

土壤 2

地震勘探 2

地震区划 2

地震波 2

地震灾害 2

城镇建设 2

基质吸力 2

微波遥感 2

核电厂 2

膨胀土 2

重金属 2

风化砂 2

3D层位 1

ACP1000 1

AP1000 1

DX桩 1

展开 ︾

检索范围:

排序: 展示方式:

Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 490-505 doi: 10.1007/s11709-020-0669-5

摘要: This study investigates the performance of four machine learning (ML) algorithms to evaluate the earthquake-induced liquefaction potential of soil based on the cone penetration test field case history records using the Bayesian belief network (BBN) learning software Netica. The BBN structures that were developed by ML algorithms-K2, hill climbing (HC), tree augmented naive (TAN) Bayes, and Tabu search were adopted to perform parameter learning in Netica, thereby fixing the BBN models. The performance measure indexes, namely, overall accuracy ( ), precision, recall, , and area under the receiver operating characteristic curve, were used to evaluate the training and testing BBN models’ performance and highlight the capability of the K2 and TAN Bayes models over the Tabu search and HC models. The sensitivity analysis results showed that the cone tip resistance and vertical effective stress are the most sensitive factors, whereas the mean grain size is the least sensitive factor in the prediction of seismic soil liquefaction potential. The results of this study can provide theoretical support for researchers in selecting appropriate ML algorithms and improving the predictive performance of seismic soil liquefaction potential models.

关键词: seismic soil liquefaction     Bayesian belief network     cone penetration test     parameter learning     structural learning    

A constrained neural network model for soil liquefaction assessment with global applicability

Yifan ZHANG, Rui WANG, Jian-Min ZHANG, Jianhong ZHANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1066-1082 doi: 10.1007/s11709-020-0651-2

摘要: A constrained back propagation neural network (C-BPNN) model for standard penetration test based soil liquefaction assessment with global applicability is developed, incorporating existing knowledge for liquefaction triggering mechanism and empirical relationships. For its development and validation, a comprehensive liquefaction data set is compiled, covering more than 600 liquefaction sites from 36 earthquakes in 10 countries over 50 years with 13 complete information entries. The C-BPNN model design procedure for liquefaction assessment is established by considering appropriate constraints, input data selection, and computation and calibration procedures. Existing empirical relationships for overburden correction and fines content adjustment are shown to be able to improve the prediction success rate of the neural network model, and are thus adopted as constraints for the C-BPNN model. The effectiveness of the C-BPNN method is validated using the liquefaction data set and compared with that of several liquefaction assessment methods currently adopted in engineering practice. The C-BPNN liquefaction model is shown to have improved prediction accuracy and high global adaptability.

关键词: soil liquefaction assessment     case history dataset     constrained neural network model     existing knowledge    

In situ-based assessment of soil liquefaction potential–Case study of an earth dam in Tunisia

Ikram GUETTAYA,Mohamed Ridha EL OUNI

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 456-461 doi: 10.1007/s11709-014-0259-5

摘要: The present paper examines the evaluation of liquefaction potential of an earth dam foundation in Tunisia. The assessment of soil liquefaction was made using deterministic and probabilistic simplified procedures developed from several case histories. The data collected from the field investigation performed before and after the vibrocompaction are analyzed and the results are reported. The obtained results show that after vibrocompaction, a significant improvement of the soil resistance reduces the liquefaction potential of the sandy foundation. Indeed, in the untreated layers, the factor of safety drops below 1 which means that the soil is susceptible for liquefaction. However, in the compacted horizons, the values of exceed the unit which justifies the absence of liquefaction hazard of the foundation.

关键词: liquefaction     cone penetration test (CPT)     standard penetration test (SPT)     vibrcompaction     sand    

A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1476-1491 doi: 10.1007/s11709-020-0670-z

摘要: The unprecedented liquefaction-related land damage during earthquakes has highlighted the need to develop a model that better interprets the liquefaction land damage vulnerability (LLDV) when determining whether liquefaction is likely to cause damage at the ground’s surface. This paper presents the development of a novel comprehensive framework based on select case history records of cone penetration tests using a Bayesian belief network (BBN) methodology to assess seismic soil liquefaction and liquefaction land damage potentials in one model. The BBN-based LLDV model is developed by integrating multi-related factors of seismic soil liquefaction and its induced hazards using a machine learning (ML) algorithm-K2 and domain knowledge (DK) data fusion methodology. Compared with the C4.5 decision tree-J48 model, naive Bayesian (NB) classifier, and BBN-K2 ML prediction methods in terms of overall accuracy and the Cohen’s kappa coefficient, the proposed BBN K2 and DK model has a better performance and provides a substitutive novel LLDV framework for characterizing the vulnerability of land to liquefaction-induced damage. The proposed model not only predicts quantitatively the seismic soil liquefaction potential and its ground damage potential probability but can also identify the main reasons and fault-finding state combinations, and the results are likely to assist in decisions on seismic risk mitigation measures for sustainable development. The proposed model is simple to perform in practice and provides a step toward a more sophisticated liquefaction risk assessment modeling. This study also interprets the BBN model sensitivity analysis and most probable explanation of seismic soil liquefied sites based on an engineering point of view.

关键词: Bayesian belief network     liquefaction-induced damage potential     cone penetration test     soil liquefaction     structural learning and domain knowledge    

Predicting lateral displacement caused by seismic liquefaction and performing parametric sensitivity

Nima PIRHADI, Xiaowei TANG, Qing YANG, Afshin ASADI, Hazem Samih MOHAMED

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 506-519 doi: 10.1007/s11709-021-0677-0

摘要: Lateral displacement due to liquefaction ( ) is the most destructive effect of earthquakes in saturated loose or semi-loose sandy soil. Among all earthquake parameters, the standardized cumulative absolute velocity ( ) exhibits the largest correlation with increasing pore water pressure and liquefaction. Furthermore, the complex effect o fine content( ) at different values has been studied and demonstrated. Nevertheless, these two contexts have not been entered into empirical and semi-empirical models to predict This study bridges this gap by adding to the data set and developing two artificial neural network (ANN) models. The first model is based on the entire range of the parameters, whereas the second model is based on the samples with values that are less than the 28% critical value. The results demonstrate the higher accuracy of the second model that is developed even with less data. Additionally, according to the uncertainties in the geotechnical and earthquake parameters, sensitivity analysis was performed via Monte Carlo simulation (MCS) using the second developed ANN model that exhibited higher accuracy. The results demonstrated the significant influence of the uncertainties of earthquake parameters on predicting

关键词: lateral spreading displacement     cumulative absolute velocity     fine content     artificial neural network     sensitivity analysis     Monte Carlo simulation    

Evaluation of liquefaction-induced lateral displacement using Bayesian belief networks

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 80-98 doi: 10.1007/s11709-021-0682-3

摘要: Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes. Therefore, an accurate estimation of lateral displacement in liquefaction-prone regions is an essential task for geotechnical experts for sustainable development. This paper presents a novel probabilistic framework for evaluating liquefaction-induced lateral displacement using the Bayesian belief network (BBN) approach based on an interpretive structural modeling technique. The BBN models are trained and tested using a wide-range case-history records database. The two BBN models are proposed to predict lateral displacements for free-face and sloping ground conditions. The predictive performance results of the proposed BBN models are compared with those of frequently used multiple linear regression and genetic programming models. The results reveal that the BBN models are able to learn complex relationships between lateral displacement and its influencing factors as cause–effect relationships, with reasonable precision. This study also presents a sensitivity analysis to evaluate the impacts of input factors on the lateral displacement.

关键词: Bayesian belief network     seismically induced soil liquefaction     interpretive structural modeling     lateral displacement    

Seismic effects on reinforcement load and lateral deformation of geosynthetic-reinforced soil walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1001-1015 doi: 10.1007/s11709-021-0734-8

摘要: Current design methods for the internal stability of geosynthetic-reinforced soil (GRS) walls postulate seismic forces as inertial forces, leading to pseudo-static analyses based on active earth pressure theory, which yields unconservative reinforcement loads required for seismic stability. Most seismic analyses are limited to the determination of maximum reinforcement strength. This study aimed to calculate the distribution of the reinforcement load and connection strength required for each layer of the seismic GRS wall. Using the top-down procedure involves all of the possible failure surfaces for the seismic analyses of the GRS wall and then obtains the reinforcement load distribution for the limit state. The distributions are used to determine the required connection strength and to approximately assess the facing lateral deformation. For sufficient pullout resistance to be provided by each reinforcement, the maximum required tensile resistance is identical to the results based on the Mononobe–Okabe method. However, short reinforcement results in greater tensile resistances in the mid and lower layers as evinced by compound failure frequently occurring in GRS walls during an earthquake. Parametric studies involving backfill friction angle, reinforcement length, vertical seismic acceleration, and secondary reinforcement are conducted to investigate seismic impacts on the stability and lateral deformation of GRS walls.

关键词: geosynthetics     reinforced soil     retaining walls     seismic performance    

Machine learning-based seismic assessment of framed structures with soil-structure interaction

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 205-223 doi: 10.1007/s11709-022-0909-y

摘要: The objective of the current study is to propose an expert system framework based on a supervised machine learning technique (MLT) to predict the seismic performance of low- to mid-rise frame structures considering soil-structure interaction (SSI). The methodology of the framework is based on examining different MLTs to obtain the highest possible accuracy for prediction. Within the MLT, a sensitivity analysis was conducted on the main SSI parameters to select the most effective input parameters. Multiple limit state criteria were used for the seismic evaluation within the process. A new global seismic assessment ratio was introduced that considers both serviceability and strength aspects by utilizing three different engineering demand parameters (EDPs). The proposed framework is novel because it enables the designer to seismically assess the structure, while simultaneously considering different EDPs and multiple limit states. Moreover, the framework provides recommendations for building component design based on the newly introduced global seismic assessment ratio, which considers different levels of seismic hazards. The proposed framework was validated through comparison using non-linear time history (NLTH) analysis. The results show that the proposed framework provides more accurate results than conventional methods. Finally, the generalization potential of the proposed framework was tested by investigating two different types of structural irregularities, namely, stiffness and mass irregularities. The results from the framework were in good agreement with the NLTH analysis results for the selected case studies, and peak ground acceleration (PGA) was found to be the most influential input parameter in the assessment process for the case study models investigated. The proposed framework shows high generalization potential for low- to mid-rise structures.

关键词: seismic hazard     artificial neural network     soil-structure interaction     seismic analysis    

Seismic responses of subway station with different distributions of soft soil in Tianjin

Dejian YANG,Meiling DUAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 187-193 doi: 10.1007/s11709-014-0252-z

摘要: In connection with the practical project of Kunming Road station of Tianjin subway Line 3, the paper established a two-dimensional finite element model with visco-elastic boundary by using ANSYS and analyzed seismic responses of subway station with different distribution of soft soil. The nonlinear dynamic properties of soft soils are modeled by the KINH. And obtain the response rules about displacement and internal force on subway station in the general field soil and five different distributions of soft soil. Provide reference for improving the seismic performance of subway stations in Tianjin soft soil.

关键词: distribution of soft soil     soft soil in Tianjin     seismic response     ANSYS    

Model test of stone columns as liquefaction countermeasure in sandy soils

Mengfei QU,Qiang XIE,Xinwen CAO,Wen ZHAO,Jianjun HE,Jiang JIN

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 481-487 doi: 10.1007/s11709-016-0355-9

摘要: The shaking table model test was conducted to investigate earthquake resistant behavior of stone columns under the intensity of an earthquake resistance of buildings is VIII. The test results show that when acceleration is less than 0.20 g, composite foundation is not liquefied, settlement is also small and pile dislocation is not observed; when acceleration is 0.3g, ground outside embankment’s slope toe is liquefied and ground within stone column composite foundation is not. It is suggesting that reinforcement scale of stone column foundation should be widened properly. The designed stone column composite foundation meets the requirements for seismic resistance.

关键词: stone column composite foundation     seismic liquefaction     shaking table test    

Analyses of the seismic responses of soil layers with deep deposits

LOU Menglin, LI Yuchun, LI Nansheng

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 188-193 doi: 10.1007/s11709-007-0021-3

摘要: Several typical problems in the seismic response analysis of soil layers with deep deposits have been studied according to the seismic response analysis of the soil layer in the Shanghai region. The problems include the effect of the inclination of the bedrock under the soil layer on the seismic responses of the soil layer, the rationality of the artificial horizontal bedrock boundary in the soil layer, and the effect of the wave velocity of the bedrock and dynamic characteristics of the soil media on the seismic responses of the soil layer. Some results are obtained by numerical analysis. In the seismic response analysis, the effect of angle of inclination of the rock surface under the soil layer can be neglected if the angle is not more than two degrees. A significant error will be introduced in the calculation when the artificial horizontal rock surface is assumed in the soil layer according to the shear velocity of the soil media. The elasticity of the solid rock has little influence on the seismic response of the deep soil layer. The field investigation on the soil dynamic property should be paid more attention to.

关键词: little influence     layer     calculation     Shanghai     dynamic    

Influence of site conditions on seismic design parameters for foundations as determined via nonlinear

Muhammad Tariq A. CHAUDHARY

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 275-303 doi: 10.1007/s11709-021-0685-0

摘要: Site conditions, including geotechnical properties and the geological setting, influence the near-surface response of strata subjected to seismic excitation. The geotechnical parameters required for the design of foundations include mass density ( ), damping ratio ( ), shear wave velocity ( ), and soil shear modulus ( ). The values of the last three parameters are sensitive to the level of nonlinear strain induced in the strata due to seismic ground motion. In this study, the effect of variations in soil properties, such as plasticity index ( ), effective stress ( ), over consolidation ratio (OCR), impedance contrast ratio ( ) between the bedrock and the overlying strata, and depth of soil strata over bedrock ( ), on seismic design parameters ( , , and ) was investigated for National Earthquake Hazards Reduction Program (NEHRP) site classes C and D, through 1D nonlinear seismic site response analysis. The Morris one-at-a-time (OAT) sensitivity analysis indicated that , , and were significantly influenced by variations in , while affected more than it affected and . However, the influence of on these parameters was less significant. It was also found that variations in soil properties influenced seismic design parameters in soil type D more significantly than in soil type C. Predictive relationships for , , and were derived based on the 1D seismic site response analysis and sensitivity analysis results. The , , and values obtained from the analysis were compared with the corresponding values in NEHRP to determine the similarities and differences between the two sets of values. The need to incorporate and in the metrics for determining , , and for the seismic design of foundations was highlighted.

关键词: site effects     1D seismic site response analysis     sensitivity analysis     foundations     shear wave velocity     soil shear modulus    

Numerical study on the seismic response of the underground subway station- surrounding soil mass-ground

Guobo WANG, Mingzhi YUAN, Xianfeng MA, Jun WU

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 424-435 doi: 10.1007/s11709-016-0381-7

摘要: Ground buildings constructed above metro station have increased very quickly due to the limited land resources in urban areas. In this paper, the seismic response of the Underground subway station-Surrounding soil mass-Ground adjacent buildings (USG) system subjected to various seismic loading is studied through numerical analysis. The numerical model is established in terms of the calculation domain, boundary condition, and contact property between soil and structure based on the real project. The reciprocal influence between subway station and ground adjacent building, and their effects on the dynamic characteristics of surrounding soil mass are also investigated. Through the numerical study, it is found that the impact of underground structure on the dynamic characteristics of the surrounding soil mass depends on its own dimension, and the presence of underground structure has certain impact on the seismic response of ground adjacent building. Due to the presence of underground structure and ground adjacent building, the vertical acceleration generated by the USG system cannot be ignored. The outcomes of this study can provide the references for seismic design of structures in the USG system.

关键词: underground subway station     ground adjacent building     seismic response    

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 566-583 doi: 10.1007/s11709-023-0905-x

摘要: The analysis of the bearing capacity of strip footings sited near an excavation is critical in geotechnics. In this study, the effects of the geometrical features of the excavation and the soil strength properties on the seismic bearing capacity of a strip footing resting on an excavation were evaluated using the lower and upper bounds of the finite element limit analysis method. The effects of the setback distance ratio (L/B), excavation height ratio (H/B), soil strength heterogeneity (kB/cu), and horizontal earthquake coefficient (kh) were analyzed. Design charts and tables were produced to clarify the relationship between the undrained seismic bearing capacity and the selected parameters.

关键词: excavation     finite element limit analysis     heterogeneous soil     strip footing     undrained bearing capacity    

New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation

Suman HAZARI, Sima GHOSH, Richi Prasad SHARMA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1492-1508 doi: 10.1007/s11709-020-0679-3

摘要: Natural slopes consist of non-homogeneous soil profiles with distinct characteristics from slopes made of homogeneous soil. In this study, the limit equilibrium modified pseudo-dynamic method is used to analyze the stability of two-layered soil slopes in which the failure surface is assumed to be a logarithmic spiral. The zero-stress boundary condition at the ground surface under the seismic loading condition is satisfied. New formulations derived from an analytical method are proposed for the predicting the seismic response in two-layered soil. A detailed parametric study was performed in which various parameters (seismic accelerations, damping, cohesion, and angle of internal friction) were varied. The results of the present method were compared with those in the available literature. The present analytical analysis was also verified against the finite element analysis results.

关键词: layered soil     limit equilibrium method     seismic analysis     damping     PLAXIS    

标题 作者 时间 类型 操作

Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

期刊论文

A constrained neural network model for soil liquefaction assessment with global applicability

Yifan ZHANG, Rui WANG, Jian-Min ZHANG, Jianhong ZHANG

期刊论文

In situ-based assessment of soil liquefaction potential–Case study of an earth dam in Tunisia

Ikram GUETTAYA,Mohamed Ridha EL OUNI

期刊论文

A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

期刊论文

Predicting lateral displacement caused by seismic liquefaction and performing parametric sensitivity

Nima PIRHADI, Xiaowei TANG, Qing YANG, Afshin ASADI, Hazem Samih MOHAMED

期刊论文

Evaluation of liquefaction-induced lateral displacement using Bayesian belief networks

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD

期刊论文

Seismic effects on reinforcement load and lateral deformation of geosynthetic-reinforced soil walls

期刊论文

Machine learning-based seismic assessment of framed structures with soil-structure interaction

期刊论文

Seismic responses of subway station with different distributions of soft soil in Tianjin

Dejian YANG,Meiling DUAN

期刊论文

Model test of stone columns as liquefaction countermeasure in sandy soils

Mengfei QU,Qiang XIE,Xinwen CAO,Wen ZHAO,Jianjun HE,Jiang JIN

期刊论文

Analyses of the seismic responses of soil layers with deep deposits

LOU Menglin, LI Yuchun, LI Nansheng

期刊论文

Influence of site conditions on seismic design parameters for foundations as determined via nonlinear

Muhammad Tariq A. CHAUDHARY

期刊论文

Numerical study on the seismic response of the underground subway station- surrounding soil mass-ground

Guobo WANG, Mingzhi YUAN, Xianfeng MA, Jun WU

期刊论文

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

期刊论文

New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation

Suman HAZARI, Sima GHOSH, Richi Prasad SHARMA

期刊论文